Forschungsinitiative „Mining the Atmosphere": Beton als Kohlenstoffspeicher


Figure: BFT International

Figure: BFT International
Um die CO2-Konzentration auf das angestrebte Niveau von 1988 – also auf 350 ppm («parts per million») – zu senken, gilt es schätzungsweise 400 Milliarden Tonnen Kohlenstoff aus der Atmosphäre zu entfernen. Eine gewaltige Menge, die rund 1'500 Milliarden Tonnen CO2 entspricht. Empa-Forschende haben nun berechnet, dass dieser überschüssige Kohlenstoff bis Mitte des nächsten Jahrhunderts in Baumaterialien wie Beton gespeichert werden könnte. «Diese Berechnungen basieren auf der Annahme, dass nach 2050 ausreichend erneuerbare Energie verfügbar ist, um CO₂ aus der Atmosphäre zu entfernen – ein sehr energie-intensives Unterfangen. Diese Annahme ermöglicht es uns, mit verschiedenen Szenarien zu analysieren, wie realistisch und effizient das Konzept unserer «Mining the Atmosphere»-Initiative ist», sagt Pietro Lura, Leiter der Empa-Abteilung Beton und Asphalt. Die gross angelegte Forschungsinitiative hat sich zum Ziel gesetzt, überschüssiges CO2 nicht nur zu binden, sondern als wertvollen Rohstoff zu nutzen.

 

Baumaterialien sind entscheidend

Überschüssige erneuerbare Energie wird genutzt, um CO₂ in Methan oder Methanol umzuwandeln, die wiederum zu Polymeren, Wasserstoff oder festem Kohlenstoff weiterverarbeitet werden. «Selbst wenn genügend erneuerbare Energie verfügbar ist, bleibt die zentrale Frage, wie diese riesigen Mengen Kohlenstoff langfristig gelagert werden können. Beton scheint dafür prädestiniert, da er enorme Mengen aufnehmen kann», erläutert Lura. Die Forschenden verglichen deshalb die Masse der weltweit verwendeten Materialien wie Beton, Asphalt oder Kunststoffe mit der Menge an Kohlenstoff, die aus der Atmosphäre entfernt werden muss – einschliesslich der schwer vermeidbaren Emissionen. «Die weltweit benötigte Masse an Baumaterialien übersteigt den überschüssigen Kohlenstoff in der Atmosphäre bei weitem. Es bleibt jedoch eine Herausforderung, wie schnell und effizient Kohlenstoff in diese Materialien eingebracht werden kann, ohne deren Eigenschaften zu verschlechtern», so das Fazit von Lura.

Im Vergleich zu anderen CO₂-Minderungsmassnahmen wie unterirdische Speichermethoden bietet der «Mining the Atmosphere»-Ansatz mehrere Vorteile: Er sorgt für langfristige Stabilität sowie eine hohe Speicherdichte von Kohlenstoff und ermöglicht eine dezentrale Umsetzung. Gleichzeitig lassen sich so herkömmliche CO₂-emittierende Baumaterialien ersetzen. «Kohlenstoff muss in stabile Materialien eingebunden werden, da eine direkte Lagerung gefährlich sein kann – beispielsweise durch Brandgefahr. Idealerweise werden diese mit Kohlenstoff angereicherten Baumaterialien über mehrere Recyclingzyklen verwendet, bevor sie schliesslich sicher deponiert werden», so Lura.

Laut dem Empa-Forscher soll dieses Konzept nicht nur zur Reduktion von CO₂ beitragen, sondern auch eine kohlenstoffbindende Wirtschaft ermöglichen, die sowohl ökologische als auch ökonomische Vorteile bietet. «Kohlenstoff aus der Atmosphäre kann beispielsweise für die Herstellung von Polymeren, Bitumen für Asphalt oder keramischen Materialien wie Siliziumkarbid genutzt werden. Ausserdem könnten weitere hochwertige Materialien wie Karbonfasern, Kohlenstoffnanoröhren und Graphen den gesamten Prozess wirtschaftlich tragfähig machen – wobei Beton eindeutig den grössten Anteil am Kohlenstoffspeicher ausmachen wird.»



Harte Gesteine aus Kohlenstoff als Beschleuniger

Wie lange würde es somit dauern, das gesamte überschüssige CO₂ aus der Atmosphäre zu entfernen? Bei einem optimalen Szenario könnten Baumaterialien wie Beton jährlich bis zu zehn Gigatonnen Kohlenstoff binden. Dieses Potenzial würde jedoch erst ab 2050 voll ausgeschöpft werden, wenn nach der Energiewende genügend erneuerbare Energie vorhanden ist. Neben den überschüssigen 400 Gigatonnen Kohlenstoff müssten bis 2100 zusätzlich mindestens 80 Gigatonnen aus schwer vermeidbaren Emissionen entfernt werden. Gemäss den verschiedenen Szenarien liesse sich damit innerhalb von 50 bis 150 Jahren das überschüssige CO₂ vollständig in Baumaterialien unterbringen – was das CO₂-Niveau wieder auf das angestrebte Niveau von 350 ppm bringen würde.

Der Schlüssel zu den optimistischsten Szenarien liegt in der Herstellung von Siliziumkarbid, das als Füllstoff in Baumaterialien genutzt werden kann. «Siliziumkarbid bietet enorme Vorteile, da es den Kohlenstoff praktisch für immer bindet und mechanisch hervorragende Eigenschaften besitzt. Allerdings ist die Herstellung äusserst energieintensiv und stellt eine der grössten Herausforderungen dar, sowohl in Bezug auf die Wirtschaftlichkeit als auch auf eine nachhaltige Umsetzung», so Pietro Lura.

Allein mit Kohlenstoff in Form von poröser Gesteinskörnung würde es mehr als 200 Jahre dauern, den gesamten anthropogenen Kohlenstoffüberschuss zu beseitigen. Eine Kombination aus porösem Kohlenstoff und Siliziumkarbid bietet sich deshalb als praktikable Lösung an. Dadurch könnten grosse Mengen Kohlenstoff in Beton gespeichert werden, der zudem dauerhafter und stabiler wäre als herkömmlicher Beton. «Ziel sollte es dennoch sein, möglichst viel CO₂ pro Jahr aus der Atmosphäre zu entfernen, um zusammen mit anderen Massnahmen in einem realistischen Zeitrahmen auf 350 ppm CO2 zu kommen. Gleichzeitig ist es entscheidend, fortlaufend unsere Emissionen zu minimieren, damit der Rückholprozess nicht umsonst ist», so der Empa-Forscher.




CONTACT:

Empa

Überlandstrasse 129

8600 Dübendorf/Switzerland

Prof. Dr. Pietro Lura

+41 58 765 41 35

www.empa.ch


Thematisch passende Artikel:

Pflanzenkohle in Beton: Empa präsentiert Forschungsergebnisse

Die Bauwirtschaft als CO2-Senke? Daran arbeiten Forschende des «Concrete & Asphalt Labs» der Empa. Mit dem Einbringen von Pflanzenkohle in Beton loten sie das Potenzial von CO2-neutralem oder gar...

mehr
Ausgabe 12/2023 CARSTORCON

Mittels Negativ-Emissions-Technologie 5.000 m³ Klima-beton realisiert

CarStorCon Technologies hat 5.000 m³ Klima-Beton realisiert und damit eindrucksvoll verdeutlicht, dass aktiver Klimaschutz und wegweisende Materialinnovation bereits Realität sind. Durch die...

mehr
Ausgabe 07/2024 AHE

C-ton Quadro Betonstein von AHE speichert aktiv CO₂

Innovation im Einklang mit der Natur war schon immer der Leitfaden der AHE- Unternehmensgruppe. Jetzt bringt der Betonwarenhersteller aus Rinteln an der Weser einen völlig neuartigen Betonstein auf...

mehr

5000 m³ Klima-Beton: Aktiver Klimaschutz und Materialinnovation

CarStorCon Technologies hat 5000 m³ Klima-Beton realisiert und damit eindrucksvoll verdeutlicht, dass aktiver Klimaschutz und wegweisende Materialinnovation bereits Realität sind. Durch die...

mehr