Development of a modular footbridge system with pre-tensioned CFRP reinforcement

Pre-design and experimental investigations

Road and pedestrian bridges are commonly built as cast-in-situ, prestressed reinforced concrete structures, but this method is both expensive and time-consuming. The installed reinforcing and prestressing steel requires a high concrete cover to ensure corrosion protection, which results in massive members. Nonetheless, it is often impossible to prevent corrosion damage to the steel reinforcement, such as caused by penetration of chlorides from de-icing salt into the concrete. The associated loss of bearing capacity as well as visual or aesthetic deficiencies require expensive, labor-intensive refurbishment or even reconstruction.

To overcome these drawbacks, a modular footbridge system with fully non-metallic reinforcement is being developed as an innovative solution to build durable footbridges in a cost-effective manner. The application of a non-corrosive carbon fiber reinforced polymer (CFRP) as a mesh fabric and pre-tensioned reinforcement is suitable for building slender, long-lasting elements. High-strength concrete with a dense, fine-grained matrix is used for the purpose of enhancing durability and reducing costs, which eliminates the need for additional pavements. The modular construction method enables fast assembly and disassembly of the footbridge.

This paper outlines the dimensioning and pre-design of the cross-section of the footbridge system (see Fig.) whilst particularly considering the modular approach. Furthermore, the results of experimental investigations of the bearing capacitiy as well as bond behavior of the carbon reinforcement and the CFRP tendons are presented.

x

Related articles:

Issue 02/2021

Investigations on modular bridge constructions made of CFRP reinforced concrete

In recent decades, the requirements for existing bridge structures increased significantly due to the strong growth of traffic volume and in particular due to the higher total vehicle weights. As a...

more
Issue 08/2016 MC Bauchemie

Software for the design of CFRP reinforcement

The strengthening of reinforced concrete structures with CFRP strips (Carbon fibre reinforced plastics), plates or CF sheets offers major advantages over conventional reinforcing measures with steel:...

more
Issue 06/2022

Fibers replace reinforcement – Rapid construction with fiber-reinforced semi-precast elements

Installing conventional reinforcement is expensive and time-consuming. This process step is eliminated by using steel fiber reinforced concrete. However, in general, fibers are not used as the only...

more
Issue 02/2019 Innovative, unbounded prestressing

Precast floor slab made of carbon-reinforced concrete

As part of the C?³ research project on carbon-reinforced concrete, an unbounded prestressing system has been developed, in particular, taking the requirements of building construction into account...

more
Issue 09/2017

Flat component, transverse force reinforcement element, and reinforced concrete-/prestressed concrete component having a transverse …

(10) US 2017/0204606 Al (22) 29.04.2015 (43) 20.07.2017 (71) Technische Hochschule Mittelhessen, Gießen (DE) (57) The invention relates to L-shaped sheet metal parts 21 with an angled longitudinal...

more